31^2+x^2=144^2

Simple and best practice solution for 31^2+x^2=144^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 31^2+x^2=144^2 equation:



31^2+x^2=144^2
We move all terms to the left:
31^2+x^2-(144^2)=0
We add all the numbers together, and all the variables
x^2-19775=0
a = 1; b = 0; c = -19775;
Δ = b2-4ac
Δ = 02-4·1·(-19775)
Δ = 79100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{79100}=\sqrt{100*791}=\sqrt{100}*\sqrt{791}=10\sqrt{791}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{791}}{2*1}=\frac{0-10\sqrt{791}}{2} =-\frac{10\sqrt{791}}{2} =-5\sqrt{791} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{791}}{2*1}=\frac{0+10\sqrt{791}}{2} =\frac{10\sqrt{791}}{2} =5\sqrt{791} $

See similar equations:

| 1+|5t+5|=6 | | 9+4h=-3+8h | | 6y-30=84 | | y-52=71 | | -w-12=6w+18 | | t-17=43 | | 45+2x+15+x=180 | | 4p-10=-2p+6+8p | | 8x+(5x+3)=(10x-2)+7x | | 4(f−66)=92 | | 49=14a | | X+7=2(5x-5) | | 7(j+2)=98 | | 11x+12=5x+68 | | f/2+15=18 | | 3/4(x-16)+4=1/6x-13 | | 2x-5(x-4)=-9+5x-27 | | 11z-3=7z-39 | | 28=x-5 | | 0.5x+5=2.5x-7 | | 30=10(x+8) | | y/3=87 | | 8(r+4)=12 | | 30+2x=58 | | 1+3n=3n+2 | | 2x/9=4x/3 | | w+23=75 | | (X-3)=5-2x | | (8y+10)=(5y-4) | | 3c+2=5c-12 | | x-12=-54 | | v+13=40 |

Equations solver categories